Browser Use Mcp

Automate web browsing tasks by using natural language commands to navigate websites, fill out forms, and click buttons. Integrates with language models to facilitate programmatic control of web interactions and data extraction.

Author

Browser Use Mcp logo

pietrozullo

No License

Quick Info

GitHub GitHub Stars 3
NPM Weekly Downloads 620
Tools 1
Last Updated 8/1/2025

Tags

automation scraping browser browser automation automation web automate web


Browser Use MCP Server

Browser Use MCP Server

A FastMCP server that enables browser automation through natural language commands. This server allows Language Models to browse the web, fill out forms, click buttons, and perform other web-based tasks via a simple API.

Quick Start

1. Install the package

Install with a specific provider (e.g., OpenAI)

pip install -e "git+https://github.com/yourusername/browser-use-mcp.git#egg=browser-use-mcp[openai]"

Or install all providers


pip install -e "git+https://github.com/yourusername/browser-use-mcp.git#egg=browser-use-mcp[all-providers]"

Install Playwright browsers

playwright install chromium

2. Configure your MCP client

Add the browser-use-mcp server to your MCP client configuration:

{
    "mcpServers": {
        "browser-use-mcp": {
            "command": "browser-use-mcp",
            "args": ["--model", "gpt-4o"],
            "env": {
                "OPENAI_API_KEY": "your-openai-api-key",  // Or any other provider's API key
                "DISPLAY": ":0"  // For GUI environments
            }
        }
    }
}

Replace "your-openai-api-key" with your actual API key or use an environment variable reference like process.env.OPENAI_API_KEY.

3. Use it with your favorite MCP client

Example using mcp-use with Python

import asyncio
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from mcp_use import MCPAgent, MCPClient

async def main():
    # Load environment variables
    load_dotenv()

    # Create MCPClient from config file
    client = MCPClient(
        config={
            "mcpServers": {
                "browser-use-mcp": {
                    "command": "browser-use-mcp",
                    "args": ["--model", "gpt-4o"],
                    "env": {
                        "OPENAI_API_KEY": os.getenv("OPENAI_API_KEY"),
                        "DISPLAY": ":0",
                    },
                }
            }
        }
    )

    # Create LLM
    llm = ChatOpenAI(model="gpt-4o")

    # Create agent with the client
    agent = MCPAgent(llm=llm, client=client, max_steps=30)

    # Run the query
    result = await agent.run(
        """
        Navigate to https://github.com, search for "browser-use-mcp", and summarize the project.
        """,
        max_steps=30,
    )
    print(f"\nResult: {result}")

if __name__ == "__main__":
    asyncio.run(main())

Using Claude for Desktop

  1. Open Claude for Desktop
  2. Go to Settings → Experimental features
  3. Enable Claude API Beta and OpenAPI schema for API
  4. Add the following configuration to your Claude Desktop config file:
    • Mac: ~/Library/Application Support/Claude/claude_desktop_config.json
    • Windows: %AppData%\Claude\claude_desktop_config.json
{
    "mcpServers": {
        "browser-use": {
            "command": "browser-use-mcp",
            "args": ["--model", "claude-3-opus-20240229"]
        }
    }
}
  1. Start a new conversation with Claude and ask it to perform web tasks

Supported LLM Providers

The following LLM providers are supported for browser automation:

Provider API Key Environment Variable
OpenAI OPENAI_API_KEY
Anthropic ANTHROPIC_API_KEY
Google GOOGLE_API_KEY
Cohere COHERE_API_KEY
Mistral AI MISTRAL_API_KEY
Groq GROQ_API_KEY
Together AI TOGETHER_API_KEY
AWS Bedrock AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
Fireworks FIREWORKS_API_KEY
Azure OpenAI AZURE_OPENAI_API_KEY and AZURE_OPENAI_ENDPOINT
Vertex AI GOOGLE_APPLICATION_CREDENTIALS
NVIDIA NVIDIA_API_KEY
AI21 AI21_API_KEY
Databricks DATABRICKS_HOST and DATABRICKS_TOKEN
IBM watsonx.ai WATSONX_API_KEY
xAI XAI_API_KEY
Upstage UPSTAGE_API_KEY
Hugging Face HUGGINGFACE_API_KEY
Ollama OLLAMA_BASE_URL
Llama.cpp LLAMA_CPP_SERVER_URL

For more information check out: https://python.langchain.com/docs/integrations/chat/

You can create a .env file in the project directory with your API keys:

OPENAI_API_KEY=your_openai_key_here
# Or any other provider key

Troubleshooting

  • API Key Issues: Ensure your API key is correctly set in your environment variables or .env file.
  • Provider Not Found: Make sure you've installed the required provider package.
  • Browser Automation Errors: Check that Playwright is correctly installed with playwright install chromium.
  • Model Selection: If you get errors about an invalid model, try using the --model flag to specify a valid model for your provider.
  • Debug Mode: Use --debug to enable more detailed logging that can help identify issues.
  • MCP Client Configuration: Make sure your MCP client is correctly configured with the right command and environment variables.

License

MIT # browser-use-mcp